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Monte Carlo and Jets
Parton Branching

DGLAP equation

? Quarks and gluons

? Solution by moments

Sudakov form factor

? Infrared cutoff

Monte Carlo method

Soft gluon emission

? Angular ordering

? Coherent branching

QCD and Collider PhysicsLecture I: Monte Carlo programs and Jets – p.3/45



Parton branching - kinematics

pa = (Ea +
p2

a

4Ea
, 0, 0, Ea − p2

a

4Ea
)

pb = (Eb, +Eb sin θb, 0, +Eb cos θb)

pc = (Ec,−Ec sin θc, 0, +Ec cos θc)

the kinematics and notation for the branching of parton a into b + c. We assume

that

p2
b , p2

c � p2
a ≡ t

a is an outgoing parton, which is called timelike branching since t > 0.

The opening angle is θ = θb + θc. Defining the energy fraction as

z = Eb/Ea = 1 − Ec/Ea ,

we have for small angles, t = 2EbEc(1 − cos θ) = z(1 − z)E2
aθ2

using transverse momentum conservation,

θ =
1

Ea

s

t

z(1 − z)
=

θb

1 − z
=

θc

z
.
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Dirac eqn. Massless fermions

The fermions involved in high energy processes can often be taken to be

massless.

We choose an explicit representation for the gamma matrices. The Bjorken and

Drell representation is,

γ0 =

 

1 0

0 −1

!

, γi =

 

0 σi

−σi
0

!

, γ5 =

 

0 1

1 0

!

,

The Weyl representation is more suitable at high energy

γ0 =

 

0 1

1 0

!

, γi =

 

0 −σi

σi
0

!

, γ5 =

 

1 0

0 −1

!

,

In the Weyl representation upper and lower components have different helicities.

Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν

in the Weyl representation γ0γi =

 

σi
0

0 −σi

!

. σ are the Pauli matrices.

QCD and Collider PhysicsLecture I: Monte Carlo programs and Jets – p.5/45



The massless spinors solns of Dirac eqn are

u+(p) =

2

6

6

6

4

p

p+
p

p−eiϕp

0

0

3

7

7

7

5

, u−(p) =

2

6

6

6

4

0

0
p

p−e−iϕp

−
p

p+

3

7

7

7

5

,

where

e±iϕp ≡ p1 ± ip2

p

(p1)2 + (p2)2
=

p1 ± ip2

p

p+p−
, p± = p0 ± p3.

In this representation the Dirac conjugate spinors are

u+(p) ≡ u†
+(p)γ0 =

h

0, 0,
p

p+,
p

p−e−iϕp

i

u−(p) =
h

p

p−eiϕp ,−
p

p+, 0, 0
i

Normalization

u†
±u± = 2p0
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Branching probabilities

Consider the case where

pa = (Ea +
p2

a

4Ea
, 0, 0, Ea − p2

a

4Ea
)

pb ∼ (Eb, +Ebθb, 0, +Eb)

pc ∼ (Ec,−Ecθc, 0, +Ec)

Thus for example

u†
+(p) =

p

2Eb

»

1,
θb

2
, 0, 0

–

and

u+(pc) ≡ v−(pc) =
p

2Ec

2

6

6

6

4

1

− θc

2

0

0

3

7

7

7

5

Hence for polarization vectors εin = (0, 1, 0, 0), εout = (0, 0, 1, 0)

gūb
+ γ0γ1 vc

− = g
p

4EbEc

„

1,
θb

2

«

 

0 1

1 0

! 

1

− θc

2

!

= −g
p

EbEc(θb − θc)
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−gūb
+γµε

pinµ

a vc
− = g

p

EbEc(θb − θc) = g
p

z(1 − z)(1 − 2z)Eaθ ,

−gūb
+γµε

poutµ
a vc

− = ig
p

EbEc(θb + θc) = ig
p

z(1 − z)Eaθ ,

and the matrix element relation for the branching is

|Mn+1|2 ∼ g2

t
TRF (z; εa, λb, λc)|Mn|2

where the colour factor is now Tr(tAtA)/8 = TR = 1/2. The non-vanishing functions

F (z; εa, λb, λc) for quark and antiquark helicities λb and λc are

εa λb λc F (z; εa, λb, λc)

in ± ∓ (1 − 2z)2

out ± ∓ 1

Summing over the polarizations we get

2
h

(1 − 2z)2 + 1
i

= 4(z2 + (1 − z)2).
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Branching probabilities
Z

dφ

2π
CF = P̂ba(z)

where P̂ba(z) is the appropriate splitting function

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) .

Including all the color factors we find the results for the unregulated branching

probabilities.

P̂qq(z) = CF

»

1 + z2

(1 − z)

–

,

P̂qg(z) = TR

h

z2 + (1 − z)2
i

, TR =
1

2
,

P̂gq(z) = CF

»

1 + (1 − z)2

z

–

,

P̂gg(z) = CA

»

z

(1 − z)
+

1 − z

z
+ z (1 − z)

–
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DGLAP equation

Consider enhancement of higher-order contributions due to multiple small-angle

parton emission, for example in deep inelastic scattering ( DIS)

Incoming quark from target hadron, initially with low virtual mass-squared −t0 and

carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and

lower momentum fractions by successive small-angle emissions, and is finally

struck by photon of virtual mass-squared q2 = −Q2.

Cross section will depend on Q2 and on momentum fraction distribution of partons

seen by virtual photon at this scale, D(x, Q2).
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To derive evolution equation for Q2-dependence of D(x, Q2), first introduce

pictorial representation of evolution, also useful later for Monte Carlo simulation.

Represent sequence of branchings by path in (t, x)-space. Each branching is a

step downwards in x, at a value of t equal to (minus) the virtual mass-squared

after the branching.

At t = t0, paths have distribution of starting points D(x0, t0) characteristic of

target hadron at that scale. Then distribution D(x, t) of partons at scale t is just

the x-distribution of paths at that scale.
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Change in parton distribution

Consider change in the parton distribution D(x, t) when t is increased to t + δt.

This is number of paths arriving in element (δt, δx) minus number leaving that

element, divided by δx.

Number arriving is branching probability times parton density integrated over all

higher momenta x′ = x/z,

δDin(x, t) =
δt

t

Z 1

x
dx′ dz

αS

2π
P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

Z 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

Z x

0
dx′ dz

αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0
dz

αS

2π
P̂ (z)
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Change in parton distribution

Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

Z 1

0
dz

αS

2π
P̂ (z)

»

1

z
D(x/z, t) − D(x, t)

–

.

Introduce plus-prescription with definition
Z 1

0
dx f(x) g(x)+ =

Z 1

0
dx [f(x) − f(1)] g(x) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,
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DGLAP
We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Here D(x, t) represents parton momentum fraction distribution inside incoming

hadron probed at scale t. In timelike branching, it represents instead hadron

momentum fraction distribution produced by an outgoing parton. Boundary

conditions and direction of evolution are different, but evolution equation remains

the same.
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Quarks and gluons

For several different types of partons, must take into account different processes

by which parton of type i can enter or leave the element (δt, δx). This leads to

coupled DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) .

Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave

via q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

„

1 + z2

1 − z

«

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]
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Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).

Thus number arriving is

δD
g,in =

δt

t

Z 1

0
dz

αS

2π

(

P̂gg(z)

"

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

#

+
P̂qq(z)

1 − z

"

Dq

„

x

1 − z
, t

«

+ Dq̄

„

x

1 − z
, t

«

#)

=
δt

t

Z 1

0

dz

z

αS

2π

n

2P̂gg(z)Dg

“x

z
, t
”

+ P̂qq(1 − z)
h

Dq

“x

z
, t
”

+ Dq̄

“x

z
, t
”io

,

Gluon can leave by splitting into either gg or qq̄, so that

δD
g,out =

δt

t
Dg(x, t)

Z 1

0
dz

αS

2π

h

P̂gg(z) + Nf P̂qg(z) dz
i

.

After some manipulation we find

Pgg(z) = 2CA

"

„

z

1 − z
+

1

2
z(1 − z)

«

+

+
1 − z

z
+

1

2
z(1 − z)

#

− 2

3
Nf TR δ(1 − z) ,

Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF
1 + (1 − z)2

z
.
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Using definition of the plus-prescription, can check that

„

z

1 − z
+

1

2
z(1 − z)

«

+

=
z

(1 − z)+
+

1

2
z(1 − z) +

11

12
δ(1 − z)

„

1 + z2

1 − z

«

+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) ,

so Pqq and Pgg can be written in more common forms

Pqq(z) = CF

»

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

–

Pgg(z) = 2CA

»

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

–

+
1

6
(11CA − 4Nf TR) δ(1 − z) .
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Solution by moments

Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation

means we can compute its form at any other scale.

One strategy for doing this is to take moments (Mellin transforms) with respect to x:

D̃i(N, t) =

Z 1

0
dx xN−1 Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

Z

C
dN x−N D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of

integrand.

After Mellin transformation, convolution in DGLAP equation becomes simply a

product:

t
∂

∂t
D̃i(x, t) =

X

j

γij(N, αS)D̃j(N, t)
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Anomalous dimensions
The moments of splitting functions give PT expansion of anomalous dimensions
γij :

γij(N, αS) =
∞
X

n=0

γ
(n)
ij (N)

“αS

2π

”n+1

γ
(0)
ij (N) = P̃ij(N) =

Z 1

0
dz zN−1 Pij(z)

From above expressions for Pij(z) we find

γ
(0)
qq (N) = CF

"

− 1

2
+

1

N(N + 1)
− 2

N
X

k=2

1

k

#

γ
(0)
qg (N) = TR

"

(2 + N + N2)

N(N + 1)(N + 2)

#

γ
(0)
gq (N) = CF

"

(2 + N + N2)

N(N2 − 1)

#

γ
(0)
gg (N) = 2CA

"

− 1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N
X

k=2

1

k

#

− 2

3
Nf TR .
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Scaling violation

Consider combination of parton distributions which is flavour non-singlet, e.g.

DV = Dqi − Dq̄i or Dqi − Dqj . Then mixing with the flavour-singlet gluons drops

out and solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

„

t

t0

«γqq(N,αS)

,

We see that dimensionless function DV , instead of being scale-independent

function of x as expected from dimensional analysis, has scaling violation: its

moments vary like powers of scale t (hence the name anomalous dimensions).

For running coupling αS(t), scaling violation is power-behaved in ln t rather than t.

Using leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

„

αS(t0)

αS(t)

«dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

Flavour-singlet distribution and quantitative predictions will be discussed later.
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Combined data on F2 proton

HERA F
2

0

1

2

3

4

5

1 10 10
2

10
3

10
4

10
5

F
2
 

em
-l

o
g

1
0
(x

)

Q
2
(GeV

2
)

ZEUS NLO QCD fit

H1 PDF 2000 fit

H1 94-00

H1 (prel.) 99/00

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5
x=0.000102

x=0.000161
x=0.000253

x=0.0004
x=0.0005

x=0.000632
x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases V

decreases at large x and increases at small x. Physically, this is due to increase

in the phase space for gluon emission by quarks as t increases, leading to

loss of momentum. This is clearly visible in data:
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Flavour singlet combination

For flavour-singlet combination, define

Σ =
X

i

(qi + q̄i) .

Then we obtain

t
∂Σ

∂t
=

αS(t)

2π

ˆ

Pqq ⊗ Σ + 2NfPqg ⊗ g
˜

t
∂g

∂t
=

αS(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ g] .

Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution

equation for moments has matrix form

t
∂

∂t

 

Σ̃

g̃

!

=

 

γqq 2Nfγqg

γgq γgg

! 

Σ̃

g̃

!
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Anomalous dimension matrix as a function of N .

Rapid growth at small N in gq and gg elements at lowest order

ln N behaviour at large N in qq and gg elements

NNLO now known

Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± =
1

2
[γgg + γqq ±

q

(γgg − γqq)2 + 8Nfγgqγqg] .
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Solution of lowest order DGLAP matrix equation

The reduced DGLAP equation can be written as

d

du

 

Σ̃(u)

g̃(u)

!

= P

 

Σ̃(u)

g̃(u)

!

where u = 1
2πb

ln
αS(µ2

0
)

αS(µ2)

Define projection operators, M±

M+ =
1

γ+ − γ−

h

+ P − γ−1

i

, M− =
1

γ+ − γ−

h

− P + γ+1

i

,

where M±M± = M±,M+M− = M−M+ = 0, M+ + M− = 1 and

P = γ+M+ + γ−M−

The solution is

 

Σ̃(u)

g̃(u)

!

=
h

M+ exp(γ+u) + M− exp(γ−u)
i

 

Σ̃(0)

g̃(0)

!
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Momentum partition vs Q2

For second moment

O+(2, t) = Σ(2, t) + g(2, t) with eigenvalue 0 ,

O−(2, t) = Σ(2, t) − nf

4CF
g(2, t) with eigenvalue −

„

4

3
CF +

nf

3

«

.

O+, corresponds to the total momentum carried by the quarks and gluons, is

independent of t. The eigenvector O− vanishes in the limit t → ∞:

O−(2, t) =

„

αS(t0)

αS(t)

«d−(2)

→ 0, with d−(2) =
γ−(2)

2πb
= −

`

4
3
CF + 1

3
nf

´

2πb
,

so that asymptotically we have

Σ(2, t)

g(2, t)
→ nf

4CF
=

3

16
nf .
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Asymptotia is approached slowly

The momentum fractions fq and fg in the µ2 = t → ∞ limit are therefore

fq =
3nf

16 + 3nf
, fg =

16

16 + 3nf
.

Scaling violation depends logarithmically on Q2.

Large variation at low Q2
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Gluon distribution
Large number of gluons per unit rapidity

The LHC is a copious source of gluons
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Sudakov form factor
DGLAP equations convenient for evolution of parton distributions. To study

structure of final states, slightly different form is useful. Consider again simplified

treatment with only one type of branching. Introduce Sudakov form factor:

∆(t) ≡ exp

»

−
Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ (z)

–

,

t
∂

∂t
D(x, t) =

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t

∂

∂t
∆(t) ,

t
∂

∂t

„

D

∆

«

=
1

∆

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) .
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Sudakov form factor
This is similar to DGLAP, except D replaced by D/∆ and regularized splitting

function P replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0) +

Z t

t0

dt′

t′
∆(t)

∆(t′)

Z

dz

z

αS

2π
P̂ (z)D(x/z, t′) .

This has simple interpretation. First term is contribution from paths that do not

branch between scales t0 and t. Thus Sudakov form factor ∆(t) is probability of

evolving from t0 to t without branching. Second term is contribution from paths

which have their last branching at scale t′. Factor of ∆(t)/∆(t′) is probability of

evolving from t′ to t without branching.
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Sudakov form factor
Generalization to several species of partons straightforward. Species i has

Sudakov form factor

∆i(t) ≡ exp

2

4−
X

j

Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ji(z)

3

5 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

„

Di

∆i

«

=
1

∆i

X

j

Z

dz

z

αS

2π
P̂ij(z)Dj(x/z, t) .
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Infrared cutoff
In DGLAP equation, infrared singularities of splitting functions at z = 1 are

regularized by plus-prescription. However, in above form we must introduce an

explicit infrared cutoff, z < 1 − ε(t). Branchings with z above this range are

unresolvable: emitted parton is too soft to detect. Sudakov form factor with this

cutoff is probability of evolving from t0 to t without any resolvable branching.

Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton

emission) contributions. No-branching probability is the sum of virtual and

unresolvable real contributions: both are divergent but their sum is finite.

Infrared cutoff ε(t) depends on what we classify as resolvable emission. For

timelike branching, natural resolution limit is given by cutoff on parton virtual

mass-squared, t > t0. When parton energies are much larger than virtual masses,

transverse momentum in a → bc is

p2
T = z(1 − z)p2

a − (1 − z)p2
b − zp2

c > 0 .

Hence for p2
a = t and p2

b , p2
c > t0 we require

z(1 − z) > t0/t ,

that is,

z, 1 − z > ε(t) =
1

2
− 1

2

p

1 − 4t0/t ' t0/t .
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Quark Sudakov form factor is then

∆q(t) ' exp

"

−
Z t

2t0

dt′

t′

Z 1−t0/t′

t0/t′
dz

αS

2π
P̂qq(z)

#

.

Careful treatment of running coupling suggests its argument should be

p2
T ∼ z(1 − z)t′. Then at large t

∆q(t) ∼
„

αS(t)

αS(t0)

«p ln t

,

(p = a constant), which tends to zero faster than any negative power of t.

Infrared cutoff discussed here follows from kinematics. We shall see later that
QCD dynamics effectively reduces phase space for parton branching, leading to a

more restrictive effective cutoff.

Formulation in terms of Sudakov form factor is well suited to computer

implementation, and is basis of “parton shower" Monte Carlo programs.
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Monte Carlo method
Monte Carlo branching algorithm operates as follows: given virtual mass scale and

momentum fraction (t1, x1) after some step of the evolution, or as initial

conditions, it generates values (t2, x2) after the next step.

? Since probability of evolving from t1 to t2 without branching is ∆(t2)/∆(t1),

t2 can be generated with the correct distribution by solving

∆(t2)

∆(t1)
= R

where R is random number (uniform on [0, 1]).

? If t2 is higher than hard process scale Q2, this means branching has finished.

? Otherwise, generate z = x2/x1 with distribution proportional to

(αS/2π)P (z), where P (z) is appropriate splitting function, by solving

Z x2/x1

ε
dz

αS

2π
P (z) = R′

Z 1−ε

ε
dz

αS

2π
P (z)

where R′ is another random number and is cutoff for resolvable branching.
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In DIS, (ti, xi) values generated define virtual masses and momentum fractions of

exchanged quark, from which momenta of emitted gluons can be computed.

Azimuthal emission angles are then generated uniformly in the range [0, 2π]. More

generally, e.g. when exchanged parton is a gluon, azimuths must be generated

with polarization angular correlations.

Each emitted (timelike) parton can itself branch. In that case t evolves downwards

towards cutoff value t0, rather than upwards towards hard process scale Q2.

Probability of evolving downwards without branching between t1 and t2 is now

given by

∆(t1)

∆(t2)
= R .

Thus branching stops when R < ∆(t1).
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Parton Cascade

Due to successive branching, parton cascade or shower develops. Each outgoing

line is source of new cascade, until all outgoing lines have stopped branching. At

this stage, which depends on cutoff scale t0, outgoing partons have to be

converted into hadrons via a hadronization model.
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Soft gluon emission

Parton branching formalism discussed so far takes account of collinear

enhancements to all orders in PT. There are also soft enhancements: When
external line with momentum p and mass m (not necessarily small) emits gluon

with momentum q, propagator factor is

1

(p ± q)2 − m2
=

±1

2p · q =
±1

2ωE(1 − v cos θ)

where ω is emitted gluon energy, E and v are energy and velocity of parton

emitting it, and θ is angle of emission. This diverges as ω → 0, for any velocity and

emission angle.

Including numerator, soft gluon emission gives a colour factor times universal,

spin-independent factor in amplitude

Fsoft =
p · ε
p · q

where ε is polarization of emitted gluon.
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For example, emission from quark gives numerator factor N · ε, where

Nµ = (6p + 6q + m)γµu(p)
ω → 0
→ (γνγµpν + γµm)u(p)

= (2pµ − γµ 6p + γµm)u(p) = 2pµu(p) .

(using Dirac equation for on-mass-shell spinor u(p)).

Universal factor Fsoft coincides with classical eikonal formula for radiation from

current pµ, valid in long-wavelength limit.

No soft enhancement of radiation from off-mass-shell internal lines, since

associated denominator factor (p + q)2 − m2 → p2 − m2 6= 0 as ω → 0.
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Enhancement factor in amplitude for each external line implies cross section

enhancement is sum over all pairs of external lines {i, j}:

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π

X

i,j

CijWij

where dΩ is element of solid angle for emitted gluon, Cij is a colour factor, and

radiation function Wij is given by

Wij =
ω2pi · pj

pi · q pj · q =
1 − vivj cos θij

(1 − vi cos θiq)(1 − vj cos θjq)
.

Colour-weighted sum of radiation functions CijWij is antenna pattern of hard
process.

Radiation function can be separated into two parts containing collinear

singularities along lines i and j. Consider for simplicity massless particles,

vi,j = 1. Then Wij = W i
ij + W j

ij where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
− 1

1 − cos θjq

«

.
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This function has remarkable property of angular ordering. Write angular

integration in polar coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq . Performing

azimuthal integration, we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij , otherwise 0.

i

j

Thus, after azimuthal averaging, contribution from W i
ij is confined to

cone, centred on direction of i, extending in angle to direction of j. Sim-

ilarly, W j
ij , averaged over φjq , is confined to cone centred on line j ex-

tending to direction of i.
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Angular ordering

To prove angular ordering property, write

1 − cos θjq = a − b cos φiq

where

a = 1 − cos θij cos θiq , b = sin θij sin θiq .

Defining z = exp(iφiq), we have

Ii
ij ≡

Z 2π

0

dφiq

2π

1

1 − cos θjq
=

1

iπb

I

dz

(z+ − z)(z − z−)

where z-integration contour is the unit circle and

z± =
a

b
±

s

a2

b2
− 1 .

Now only pole at z = z− can lie inside unit circle, so

Ii
ij =

r

1

a2 − b2
=

1

| cos θiq − cos θij |
.

Hence

Z
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Coherent branching

Angular ordering provides basis for coherent parton branching formalism, which

includes leading soft gluon enhancements to all orders.

In place of virtual mass-squared variable t in earlier treatment, use angular

variable

ζ =
pb · pc

Eb Ec
' 1 − cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for

successive branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn
dζ

ζ
dz

αS

2π
P̂ba(z) .
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Coherent branching

In place of virtual mass-squared cutoff t0, must use angular cutoff ζ0 for coherent

branching. This is to some extent arbitrary, depending on how we classify

emission as unresolvable. Simplest choice is

ζ0 = t0/E2

for parton of energy E.

For radiation from particle i with finite mass-squared t0, radiation function

becomes

ω2

„

pi · pj

pi · q pj · q − p2
i

(pi · q)2
«

' 1

ζ

„

1 − t0

E2ζ

«

,

so angular distribution of radiation is cut off at ζ = t0/E2. Thus t0 can still be

interpreted as minimum virtual mass-squared.

With this cutoff, most convenient definition of evolution variable is not ζ itself but

rather

t̃ = E2ζ ≥ t0 .
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Coherent branching

Angular ordering condition ζb, ζc < ζa for timelike branching a → bc (a outgoing)

becomes

t̃b < z2 t̃ , t̃c < (1 − z)2t̃

where t̃ = t̃a and z = Eb/Ea. Thus cutoff on z becomes

q

t0/t̃ < z < 1 −
q

t0/t̃ .

Neglecting masses of b and c, virtual mass-squared of a and transverse

momentum of branching are

t = z(1 − z)t̃ , p2
t = z2(1 − z)2 t̃ .

Thus for coherent branching Sudakov form factor of quark becomes

∆̃q(t̃) = exp

"

−
Z t̃

4t0

dt′

t′

Z 1−
√

t0/t′

√
t0/t′

dz

2π
αS(z2(1 − z)2t′)P̂qq(z)

#

At large t̃ this falls more slowly than form factor without coherence, due to the

suppression of soft gluon emission by angular ordering.
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Coherent branching

Note that for spacelike branching a → bc (a incoming, b spacelike), angular

ordering condition is

θθ

θ

ba

c

a b

c

θb > θa > θc ,

and so for z = Eb/Ea we now have

t̃b > z2 t̃a , t̃c < (1 − z)2 t̃a .

Thus we can have either t̃b > t̃a or t̃b < t̃a, especially at small z — spacelike

branching becomes disordered at small x.
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Recap

Parton evolution can be represented as a branching process from higher values of
x

DGLAP equation predicts growth at small x and shrinkage at large x with

increasing Q2.

The Sudakov form factor ∆(t) is the probability of evolving from t0 to t without

branching.

branching from (t1, x1) to (t2, x2) with the right probability can be performed with

by choosing three random numbers, (t, x, φ)

Branching is subject to an angular ordering constraint. Large angle emission is

dynamically suppressed.

QCD and Collider PhysicsLecture I: Monte Carlo programs and Jets – p.45/45


	Bibliography
	 Monte Carlo and Jets
	Parton branching - kinematics
	Dirac eqn. Massless fermions
	
	Branching probabilities
	
	Branching probabilities
	 DGLAP equation
	
	Change in parton distribution
	Change in parton distribution
	DGLAP
	 Quarks and gluons
	
	
	 Solution by moments
	Anomalous dimensions
	 Scaling violation
	Combined data on F2 proton
	 Flavour singlet combination
	Anomalous dimension matrix as a function of $N$.
	 Solution of lowest order DGLAP matrix equation
	 Momentum partition vs $Q^2$
	 Asymptotia is approached slowly
	 Gluon distribution
	 Sudakov form factor
	 Sudakov form factor
	 Sudakov form factor
	 Infrared cutoff
	
	 Monte Carlo method
	
	Parton Cascade
	 Soft gluon emission
	
	
	
	 Angular ordering
	Coherent branching
	Coherent branching
	Coherent branching
	Coherent branching
	Recap

